Propensity score matching after multiple imputation when a confounder has missing data - Bordeaux Population Health
Article Dans Une Revue Statistics in Medicine Année : 2023

Propensity score matching after multiple imputation when a confounder has missing data

Corentin Ségalas
Clémence Leyrat
James R Carpenter
Elizabeth Williamson

Résumé

One of the main challenges when using observational data for causal inference is the presence of confounding. A classic approach to account for confounding is the use of propensity score techniques that provide consistent estimators of the causal treatment effect under four common identifiability assumptions for causal effects, including that of no unmeasured confounding. Propensity score matching is a very popular approach which, in its simplest form, involves matching each treated patient to an untreated patient with a similar estimated propensity score, that is, probability of receiving the treatment. The treatment effect can then be estimated by comparing treated and untreated patients within the matched dataset. When missing data arises, a popular approach is to apply multiple imputation to handle the missingness. The combination of propensity score matching and multiple imputation is increasingly applied in practice.

However, in this article we demonstrate that combining multiple imputation and propensity score matching can lead to over-coverage of the confidence interval for the treatment effect estimate. We explore the cause of this over-coverage and we evaluate, in this context, the performance of a correction to Rubin's rules for multiple imputation proposed by finding that this correction removes the over-coverage.

Fichier principal
Vignette du fichier
Statistics in Medicine - 2023 - Ségalas - Propensity score matching after multiple imputation when a confounder has missing.pdf (1.77 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04693080 , version 1 (10-09-2024)

Identifiants

Citer

Corentin Ségalas, Clémence Leyrat, James R Carpenter, Elizabeth Williamson. Propensity score matching after multiple imputation when a confounder has missing data. Statistics in Medicine, 2023, 42 (7), pp.1082 - 1095. ⟨10.1002/sim.9658⟩. ⟨hal-04693080⟩

Collections

U1219
11 Consultations
7 Téléchargements

Altmetric

Partager

More