Deep convolutional neural network for mangrove mapping - UFR Sciences et technologies - Université de La Réunion
Communication Dans Un Congrès Année : 2020

Deep convolutional neural network for mangrove mapping

Résumé

Updated information on the spatial distribution of mangrove forests is of high importance for management plans. Yet, access to mangrove distribution maps is limited, even-though remote sensing data is currently freely available and deep learning algorithms score high performances in automatic classification tasks. The methodologies developed in this paper are based on a deep convolutional neural network and have been tested on WorldView 2 and Sentinel-2 images. The obtained results are highly satisfactory and open perspectives for automatically mapping mangrove distribution over large areas.

Mots clés

Fichier principal
Vignette du fichier
99522.pdf (6.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03927567 , version 1 (26-09-2024)

Identifiants

Citer

Corina Iovan, Michel Kulbicki, Éric Mermet. Deep convolutional neural network for mangrove mapping. IGARSS 2020 International Geoscience and Remote Sensing Symposium, Sep 2020, Waikoloa, United States. pp.1969-1972, ⟨10.1109/IGARSS39084.2020.9323802⟩. ⟨hal-03927567⟩
111 Consultations
5 Téléchargements

Altmetric

Partager

More